6 research outputs found

    Master of Science

    Get PDF
    thesisThis thesis discusses the development of an olfactory display for the University of Utah TreadPort Virtual Environment (UUTVE). The goal of the UUTVE is to create a virtual environment that is as life like as possible by communicating to the user as many of the sensations felt in moving around in real the world as possible, while staying within the confines of the virtual environment's workspace. The UUTVE has a visual display, auditory display, a locomotion interface and wind display. With the wind display, it is possible to create an effective olfactory display that does not have some of the limitations associated with many of the current olfactory displays. The inclusion of olfactory information in virtual environments is becoming increasingly common as the effects of including an olfactory display show an increase in user presence. The development of the olfactory display for the UUTVE includes the following components: the physical apparatus for injecting scent particles into the air stream, the development of a Computational Fluid Dynamics (CFD) model with which to control the concentration of scent being sensed by the user, and user studies to verify the model and show as proof of concept that the wind tunnel can be used to create an olfactory display. The physical apparatus of the display consists of air atomizing nozzles, solenoids for controlling when the scents are released, containers for holding the scents and a pressurized air tank used to provide the required air to make the nozzles work. CFD is used model the wind flow through the TPAWT. The model of the wind flow is used to simulate how particles advect in the wind tunnel. These particle dispersion simulations are then used to create a piecewise model that is able to predict the scent's concentration behavior as the odor flows through the wind tunnel. The user studies show that the scent delivery system is able to display an odor to a person standing in the TPAWT. The studies also provided a way to measure the time it takes for a person to recognize an odor after it has been released into the air stream, and also the time it takes for a user to recognize that the odor is no longer present

    Understanding child and adolescent cyberbullying

    Get PDF
    Global development of digital technologies has provided considerable connectivity benefits. However, connectivity of this scale has presented a seemingly unmanageable number of potential risks to psychological harm especially experienced by children and adolescents; one such risk is cyberbullying. This chapter will initially address the origins of bullying, leading into an overview of cyberbullying. A review of the unique characteristics of online communication will shed light on the ongoing debate concerning cyberbullying being potentially more than an extension of traditional bullying. Current research findings encompassing prevalence, types of behavior, consequences, and the roles within cyberbullying activity will be discussed to guide future interventions to reduce the risk of vulnerability for children and adolescents. In parallel, this chapter also considers the relative and perhaps distorted risk perception that young people have of becoming a cybervictim. Finally, this chapter acknowledges current understanding to support future digital and social evolvement.N/

    A Full Body Steerable Wind Display for a Locomotion Interface

    No full text
    This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally

    Archaeology and Heritage of the Gullah People

    No full text
    corecore